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The Front-end ASIC for the ATLAS Pixel Detector

K. Einsweiler, LBNL
 on behalf of ATLAS Pixel Collaboration

Overview of FE specifications and design

History of ATLAS Pixel FE ASIC

The first 0.25µ generation of the FE ASIC, FE-I1

Performance results using FE-I1

Second generation 0.25µ FE ASIC, FE-I2
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System Design of Pixel Module
Overall system architecture:

•Optical package and DORIC/VDC mount on separate opto-ca
•Module itself uses two LV supplies (analog and digital) and on
•Communication between module and opto-card uses 3mA LV
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Block diagram of module itself:

•Two chip design, including a single controller and event-builde
front-end chips bumped to a single silicon sensor substrate.

•Flex hybrid is used to provide interconnections above.

•Module has 46,080 channels, 10 cm2 active area, and dissipa
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Features:
•Basic interface to the outside uses a 3-wire protocol (SerialIn
•Basic interconnections between FE and MCC use bussed sig

uses full-swing CMOS. Fast signals use low-swing differentia
•To provide enhanced speed and robust module design, the s

connected from the FE to the MCC in a star topology (16 par
•There are no analog signals between MCC and FE. All FE ch

current references and DACs to control analog operating poi
•Architecture is “data-push” style: each crossing for which LV1

causes all FE chips to autonomously transmit back hit inform
crossing. LV1 signal may remain set for many contiguous cro
readout of longer time intervals (up to 16). MCC merges suc

•Synchronization signal available to ensure FE chips label LV1
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Basic FE Chip Geometry
•Agreement on pixel size was struck in Sept 96, in order to allo

detector and electronics development. 
•The geometry adopted was 50µ x 400µ for the pixel size, with

columns of 160 pixels per column.
•The geometry was mirrored between columns, so that inputs 

and 17 are on the outside. All other inputs are paired. This giv
with a common digital readout in the center, and analog cells

•The input pad geometry in the inner column pairs is then a do
pads. The metal pad is specified to be 20µ octagon, with a 1
passivation for the bump-bonding.

•The cut die size must not extend beyond 100µ from the edge
three sides of the die. Hence, nothing outside of the pixel cir
three sides of the chip, to allow module construction.

•The bottom of the chip (all peripheral logic and I/O pads) is al
the total active die region 7.2mm x 10.8mm.

•An I/O pad structure of 48 pads, each consisting of a 100µ x 
and a group of 4 bump-bond pads for MCM-D applications, w

•For final modules, only the central 30 bond pads are available
to mechanical envelopes. Other 18 pads are available for dia
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Brief History: FE-B, FE-D, and FE
•Rad-soft prototyping delivered functional chips in 98 (FE-B, F

0.8µ) demonstrated all basic ATLAS pixel performance goals
•Submitted FE-D1 run, containing FE-D1 front-end chip, DORIC

prototype MCC-D0 chip (plus test chips). Submission went o
•FE-D1 suffered from minor design errors, and very poor yield

After considerable investigation, the low yield was related to 
(low rate of very leaky NMOS). Foundry never succeeded in 
but proposed a series of special corner runs.

•Submitted FE-D2 run in Aug 00, with two versions of FE-D2. 
design errors were fixed, but basic design (including dynami
suffered low yield) was left unchanged. Second version repla
with static versions, and removed other circuitry (trim DACs)
included full MCC-D2 (100mm2) and new DORIC and VDC c

•Corner runs gave no new information on yield/technology pro
chip was better, but still unacceptable. Work with this vendor

•Began work on FE-H in Dec 99. Chip was almost ready to sub
notification of massive cost increases from Honeywell. With w
effort was abandoned before actually building a complete pix

•The failure of both traditional rad-hard vendors left us with 0.2
on commercial process and rad-tolerant layout. Major effort s
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Summary of Key Requirements for FE
•Achieve in-time threshold of about 5Ke. In practice this involv

3Ke threshold, and requiring a 2Ke overdrive for in-time hit a
XCK phase is adusted so largest charges (100Ke) arrive jus
Definition of overdrive spec is that charge 2Ke above nomina
arrive no more than 20ns later to be associated with the sam

•In order to operate module at 3Ke threshold with very low noi
carefully control threshold dispersion and noise. Should have
than about 500e. Typically, this means threshold dispersion l
and noise less than about 400e.

•Tolerate leakage current of up to about 50nA per pixel, achiev
less than 10-6 hits/pixel/crossing, cross-talk to neighbors less

•Double pulse resolution of about 0.5µs for innermost layer an
•Associate all hits with unique 40MHz beam crossing, support

of at least 3.2µs, and triggered readout rate of up to 100KHz
deadtime or hit loss.

•Make charge measurement for each hit of modest quality (4-5

•Survive delivered dose of 50MRad and 1015 1MeV neutron e
•Provide ability to perform in situ testing and calibration of all f

monitoring of all specifications to make sure performance do
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Feature List for FE-I1
Design is logical evolution from FE-D and FE-H
Analog Front-end (designed for VDDA=1.6V op

•The FE uses a DC-feedback preamp design which provides e
current tolerance, close to constant-current return to baseline
stable operation with different shaping times.

•It is followed by a differential second amplifier stage, DC-coup
The reference level (VReplica) is generated in the feedback 
match the DC offset of the preamp with no input. The thresho
using two currents to modify the offsets on the inputs to the se
allowing a  large range for threshold control.

•The two-stage amplifier is followed by a differential discrimina
digital output sent to the control logic.

•The control logic provides a 5-bit threshold trim capability in e
feedback current trim capability for tuning the TOT response
control bits, including Kill (shut down preamp), Mask (block e
logic), HitBus (enable output to global FastOR) and Select (e
charge for testing). The HitBus bit also controls the summing
proportional to the feedback plus leakage current in the prea
monitoring of the feedback current, and of the leakage curre
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•A global FastOR net is created using all pixels enabled for thi
provides a self-trigger and diagnostic capability.

•All critical bias currents and voltages on the chip are controlle
There are 12 8-bit DACs for the analog front-end, and an ad
charge injection. The current DACs are referenced to an inte
reference, and the DAC values are loaded from the Global Re
via the Command Register.

•Two injection capacitors integrated into input pad. Clo has va
4.6fF), and Chi+Clo is about 40fF. VCal range of 0.8V gives 

Digital Readout (designed for VDD=2.0V opera
•It uses an 8-bit Grey-coded 40 MHz differential “timestamp” b

reference throughout the active matrix. All pixels measure the
edge timing by asynchronously latching this reference in RA

•Hits (address plus LE/TE timing) are transferred from the pixe
trailing edge occurs, using a shared bus structure in the pixel
operates at transfer rates up to 20 MHz in order to meet our 
Differential signal transmission and sense amplifiers are use

•Significant buffering is provided in the end of column region fo
the L1 latency (up to 6.4µs in this chip). Sixty four buffers are
column pair (one for each five pixels). The coincidence with t
performed in this buffer. Hits from rejected crossings are imm
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•A readout sequencer stores information on up to 16 events p
soon as the output serial link is empty, transmission of a new
begins. Essentially, sending a L1 trigger corresponds to mak
all hits associated with the corresponding beam crossing, wh
off the FE chip to the MCC.

Control Logic:
•Global control of the chip is implemented using a simple comm

signal controls whether input bits are interpreted as address 
data. There is a 20-bit Command Register. Individual bits in th
specific commands (e.g. ClockGlobal, WriteGlobal, ReadGlo

•A Global Register, consisting of 202 bits, controls Latency, DA
columns, clock speeds, and several other parameters. This r
implemented as a shift register and a shadow latch with full r
The shadow latch is SEU-tolerant since it contains critical co
information.

•A Pixel Register which snakes through the active array provid
control bits in the pixel (Select, Mask, HitBus, Kill, FDAC<0:4
Readback capability is supported by transferring FF informat
shift register for readout. The 14 latches in each pixel are SE

•Each chip on a module is geographically addressed, and its id
external wire-bonds to avoid confusion. A broadcast mode is
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FE-I1 Pinout and Geometry
Sketch of pin assignments and overall geome
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Initial FE-I1 Measurements
First wafers from 12-wafer Engineering Run ar

•All blocks worked roughly as expected. Remarkable success
chip submitted in new process !

•All performance features, even for new analog front-end, hav
expectations. Even threshold dispersion and timewalk, studie
simulations, agree reasonably well with the simulations.

•However, it was quickly realized that there was a serious yiel
pass simple selection criteria (analog/digital currents OK, all r
basic digital inject test working) was only about 15%. Even m
chips were all confined to a small area in the core of the wafe
extreme edges.Finally, chips that passed basic register tests
transistors tested), would usually be perfect for full digital and
defect density was not an issue. 

•Extensive investigations of failure modes have been made, a
performed by the foundry. Four additional wafers, initially hel
processing, were sent for evaluation. They showed very low 
basic failure modes consistent with metallization problems (m

•Example of wafer map of first wafer probed shows typical pat
wafers. We find very little variation within a lot or wafer group
variations in yield between groups !
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Wafer Map for SESB23T (good column pairs fo

•Chips with no data appear White, bad Global Registers are R
represent the Pixel Register test results. There are 18 (3) chip
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Typical wafer from good replacement lot: 

•Map shows chips passing complete cuts (supply surrents, reg
digital pixels and EOC buffers). This has a yield of 73% for th
wafers of this type, about 60 pre-production modules built an
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Performance Measurements for FE
•Example of threshold and noise performance for module w

•Left plots show threshold maps over module, right plots show 
different pixel types and maps. Typical dispersion about 150e
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•Demonstrate TOT tuning using feedback DACs:

•Inject 20Ke signal in each chip (corrected for Clo and VCal), 
Adjusting 5-bit FDACs gives factor 5 reduction in TOT disper

•Main issue is dealing with changes in TOT response with irra
given charge increases by about a factor 2 with full irradiatio
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•Distribution of 5-bit TDAC and FDAC values for previous t

•Plot on left is for TDACs. Non-Gaussian shape due to DAC n
of systematic and random effects are seen. Optimal tuning n

•Plot on right is for FDACs. Same non-Gaussian distribution s
more random. No pile-up at ends of the distribution.
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•Measure cross-talk between channels in bump-bonded mo

•Typical cross-talk values for normal pixels are 2-3%, and spe
ganged, and long-ganged) pixels have 4-5% cross-talk, or fa
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•Measure timewalk performance (time slewing vs charge) in

•Requires a full 2D scan for each pixel, and with both different
ranges. Curves above show “average” response for a modul

•Injecting large charge and looking at absolute time shows sig
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•Results of timewalk measurement (overdrive) for complete 

•Observe systematic problem of slower response at higher row
special pixels. Profile plot on right averages over all columns
arises because bias current for input transistor depends on r
voltage drops on AGND net that are amplified by bias mirrors

Time walk analysis.
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•Use self-trigger mode with Am241 X-ray source to map m

•Left shows hit map for 5M trigger concurrent scan with 100mC
dark regions are LV and HV decoupling. Total of 35 dead or m

•Right plots show average TOT response for each pixel. FDAC
achieve uniform response. More interesting plot fits peaks in

Am241 FDAC-tuned.
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•Self-trigger Am241 Results with peak-finding and calibration

•Left plots show typical raw spectra for individual pixels.
•Right plots show TOT for peak and calibrated charge for one 

calibration and inter-chip calibration not yet fully understood.

Absolute Calibration: LBL_Module11, Am241, FDAC Tuned, Ext VCal, CleanCut
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MRad, initial tune has 

tune, not optimized).
K. Einsweiler          Lawrence Berkeley National Lab
ATLAS

•Threshold performance of irradiated modules:

•Thresholds in FE-I re-disperse under irradiation. After about 2
dispersion of about 300e and needs retuning. 

•Show in situ retune after 15MRad (left is before, right is after 



A T L A S  F E  O v e r v i e w ,  F E E  2 0 0 3 ,  S n o w m a s s ,  J u l y  2 0 0 3

 Pixel FE Overview, June 30, 2003    25 of 34

ge dose of 30MRad:

e of each chip), with 

oise performance. 
ation needed.
K. Einsweiler          Lawrence Berkeley National Lab
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•Threshold/noise performance of module irradiated to avera

•Dose was very inhomogeneous (factor 2 variation over surfac
maximum dose above 50MRad.

•Retuned operation at -7C gives decent threshold and good n
Tails towards low threshold are too large, and further optimiz
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te modules:

nt of 22nA/pixel. Plot 
 in lower left to 20nA 
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•Can monitor leakage current per pixel in irradiated comple

•Plot on the left is for complete module, showing average curre
on right is for chip #0 only, showing variation from about 10nA
in upper right.

•Proven to be a powerful tool in diagnosing sensor issues and

MonLeak current (nA): Post-Rad Retuned.
Module "m420079"
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 trimmed up to 2.5V. 
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Power Management
•Critical problem for large scale experiments like ATLAS. Pow

140m from detector, with roughly 80% of voltage drop outsid
•Use rad-hard regulators from ST at 12m from detector to com

voltage drop on low mass services (2V round-trip), and provi
directly to flex hybrid of module. In limited system tests (6-7 m
with full services prototype,this works. However, significant s

•Concern over transient problems in long services caused us 
overvoltage protection circuits in FE-I1, using diode reference
with low resistance. Use of clamps has so far not proven to be
killed any electronics during system testing).

•Have also implemented power management inside individual
includes a digital regulator that powers up to 1.8V, but can be
There is a separate analog regulator that is initially inhibited,
and can be trimmed up to 2.0V. Both regulators have low-dro
for 100mA), so only marginally increases the total power con
regulators are always connected, but are “floating” if their inp
up (normal condition). Extensive simulations suggest this sho
order to cope with steady state operation with up to 4V on in
special diode protections implemented.

•Approach may not be used in first generation detetector, but 
needed for migrating to deeper sub-micron (0.13µ).
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Improvements for next generation (F
•After significant experience with FE-I1, began an upgrade pro

2002. Goal was to produce production quality chip for ATLAS
second iteration in a new process.

Serious issues for FE-I2 (many minor bug fixe
•Threshold dispersion and “re-dispersion”: The initial disp

version of FE-I1 was about 900-1000e at 3000e threshold. C
given assembly to a sigma of about 100e for a given set of c
changing the temperature from +20C to -10C re-disperses th
250e sigma. Similarly, a total dose of about 1MRad re-disper
about 300e sigma. Measurements have shown that this re-d
saturate at high total dose. Finally, small changes in the glob
adjustment also cause re-dispersion. Goal was to improve th

•Optimization of transistor sizes in preamp and second stage w
decrease dispersion from 900e to 600e with essentially no im
performance. Also, a Global threshold DAC was implemente

•Bias distribution: Significant top-bottom variations are seen
performance of FE-I1. These arise from internal voltage drop
turn modify the Vgs used to distribute large bias currents like
input transistor bias, typically 8µA). All mirror transistors in o
inversion (sub-threshold), so mirrored current is sensitive to s
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Threshold control: Very compact local DACs used for 5-bit 
poor linearity (not monotonic for certain bit combinations). In
distribution issues mentioned above cause significant top/bo
optimize predictability of threshold tuning process, improved 
DAC. New threshold scheme implemented with differential, h

•Also implemented an “auto-tune” circuit to allow much faster 
threshold trim DACs using up/down counter in each pixel.

•SEU-tolerance: All configuration data (Command Register, G
Pixel Register) is stored in SEU-tolerant latches (40,547 per 
design used two sets of cross-coupled inverters to prevent u
was modified. Initial measurements of upset rates of our SEU
the 55MeV Cyclotron showed low cross-sections. Measurem
(20GeV protons) showed more than an order of magnitude hi
would lead to somewhat unreliable operation at the LHC, de
“periodic reset” every few hundred seconds in ATLAS TDAQ
was largely compact layout not latch design.

•SEU-tolerance of FE-I2 improved by using optimized “bit-pair
with careful placement of all critical nodes (latch size about 3
have implemented a triple-redundancy scheme in the Comm
latches, with redundant write and reset control. This should r
configuration data even during operation of B-layer at design
“Hit Parity” tag to each hit to look for single-bit errors during d
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•SEU effects in data paths (dynamic) are much harder to evalu
state machines designed to use no hidden states, and individ
have localized effects (corruption/loss of individual hits). Hav
tolerant DFF based on redundant inverter pairs and voting lo

•Special pixels: ATLAS pixel sensor contains four types of pix
provide 100% coverage in multi-chip module:

•Pixels at the two edges are 600µ instead of 400µ. Pixels at th
•Capacitive loads for ganged pixels, as well as normal pixels o

traces, are much higher, producing poor timing performance
ends with 2*IP and 4*IP, in order to provide acceptable timew
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Status of FE-I2 Submission
•Final chip has 3.5M transistors (significant increase in auto-tu

was migrated to 6-metal process to deal with extra connectiv
•Fabricated in IBM Burlington foundry instead of ALTIS foundr

received in mid-May.
•Testing revealed that almost everything worked perfectly. Maj

errors in large place and route block at the bottom of the chip
global control of the chip. It is possible to operate in the lab a
this is not appropriate for use in production. Major issue was
hardening, size of this block increased by roughly a factor 3, l
longer trace lengths and larger wire loading effects. Lack of a
analysis during place and route led to setup/hold violations in

•Fixed version submitted using IBM “re-spin”, modifying 3 mas
critical clock routing by hand. Six wafers from initial engineer
back-end processing will be processed with new mask set.

•Initial wafer probing done, and yield is extremely high (92% fo
tests, not yet including all analog functionality). This suggest
technical investigations by IBM), that there are critical proces
between the two foundries for our particular designs.
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Example probe results:
•Wafer layout includes 144 reticles with 288 potentially good d
•After initial power tests, most critical tests involve validation o

Register, and 2880 bit Pixel Register with 40320 SEU-toleran

•Pixel Register divided into 9 independent sub-units (column p
for test result indicates Global Register failed. Yield is above
are concentrated on extreme edge of wafer.

•Complete wafer probing includes extensive digital and analog
hit injection to test readout with known data, characterization
threshold/noise scans and TOT measurements. Takes about
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•Implemented capacitance measurement circuit to measure cr
in input pad (Clo, Chi, Cfb). for each chip and normalize cha

•This shows minute oxide thickness variations over wafers (a fe
thickness would explain the pattern seen). This is the ONLY 
far which shows any systematic pattern over the wafer. Nice 

•Example here is small injection capacitor, which has value 7.
0.2fF. Note this has increased from FE-I1 to a target value of
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Summary
•Lengthy design program has led to very sophisticated and hig

arrays meeting all ATLAS pixel detector requirements. Final c
in commercial 0.25µ technology, using radiation-tolerant layo
achieve 50MRad tolerance and good SEU hardness without 
effects.

•First FE-I1 DSM prototypes now extensively evaluated and e
ATLAS requirements. Evaluation process has included const
pre-production modules, followed by lab measurements, test
and proton irradiations to full lifetime dose.

•Present FE-I2 design is a second generation almost-producti
3.5M transistors for 2880 channels of readout. Expect that th
observed in the first generation chip have been largely addre
has only been characterized on probe station up to now. 

•First experience with yield of new design looks excellent. Afte
we are close to serial production for this project.
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